
BGIA Report 7/2006e

Self-tests for microprocessors
incorporating safety functions

or:

“Quo vadis, fault?”

Authors: Mario Mai, Günter Reuss

 BGIA – Institute for Occupational Safety and Health of the

German Social Accident Insurance, Sankt Augustin

Editorial office: Central division of the BGIA

Published by: German Social Accident Insurance (DGUV)

 BGIA – Institute for Occupational Safety and Health of the

German Social Accident Insurance

 Alte Heerstr. 111, 53757 Sankt Augustin, Germany

 Telephone: +49 / 02241 / 231 − 01

 Fax: +49 / 02241 / 231 − 1333

 Internet: www.dguv.de

 − Mai 2009 −

ISBN: 978-3-88383-792-5

ISSN: 1869-3491

Self-tests for microprocessors incorporating safety functions
or:
“Quo vadis, fault?”

Abstract

The increasingly widespread use of microprocessors in safety-related products such

as controls and sensors has led to particular requirements being placed upon their

safety. The response of the controller in the event of a fault must be deterministic,

and hazardous operations must be preventable. For such supplementary measures

which are to be taken during the design of safe controls, this report describes pro-

cessor tests by which the systems concerned are to be made suitably robust for

safety-related applications. The measures presented here are software modules

written in the Assembler programming language. Based upon the arrangements

for error detection required by the standards, these measures enable the required

level of safety to be attained in conjunction with the system architecture (structure)

employed. The measures described represent snapshots of possible solutions,

and should be regarded as examples only.

Selbsttests für Mikroprozessoren mit Sicherheitsaufgaben
oder:
„Quo vadis Fehler“?

Kurzfassung

Mit zunehmendem Einsatz von Mikroprozessoren in sicherheitstechnischen Pro-

dukten, wie Steuerungen und Sensoren, entstanden auch besondere Anforderungen

an deren Sicherheit. Die Reaktion der Steuerung im Fehlerfall muss deterministisch

sein und gefährliche Aktionen müssen verhindert werden können. Dieser Report

beschreibt für den Teil der zusätzlichen Maßnahmen, die beim Bau sicherer Steue-

rungen getroffen werden müssen, Rechnertests, um diese Systeme für eine sicher-

heitstechnische Anwendung zu ertüchtigen. Bei den hier vorgestellten Maßnahmen

handelt es sich um Softwaremodule in der Programmiersprache Assembler. Damit

kann in Anlehnung an die in den Normen geforderten Fehleraufdeckungen, zusam-

men mit der jeweils verwendeten Systemarchitektur (Struktur), die notwendige

Sicherheit erreicht werden. Die Beispiele sind Momentaufnahmen möglicher Lösun-

gen, die aber keinen Anspruch auf Vollständigkeit erheben können.

Tests automatiques pour les microprocesseurs
ayant des tâches de sécurité
Ou :
« Défaut quo vadis » ?

Résumé

L’utilisation croissante de microprocesseurs pour les produits dédiés à la sécurité,

comme les commandes et les capteurs, a entraîné des exigences particulières

concernant leur sécurité. La réaction de la commande en cas de défaut doit être

assurée et les opérations dangereuses doivent pouvoir être empêchées. En ce qui

concerne les mesures supplémentaires devant être prises pour la construction de

commandes sûres, ce rapport décrit les tests automatisés permettant une utilisation

de ces systèmes dans des applications de sécurité. Les mesures présentées ici

traitent de modules logiciels dans le langage de programmation Assembleur. La

sécurité nécessaire peut ainsi être atteinte selon les découvertes de défauts exigées

dans les normes, avec l’architecture de système utilisée dans chaque cas. Les

exemples sont des épreuves instantanées de résolutions possibles qui ne peuvent

cependant pas prétendre être exhaustifs.

Autoverificación de microprocesadores dotados
de funciones de seguridad
o:

¿„Quo vadis error“?

Resumen

Con el creciente empleo de microprocesadores en aplicaciones relevantes para

la seguridad, como mandos y sensores, también surgen exigencias específicas

en razón a su seguridad. La reacción del mando en caso de fallo deberá ser deter-

minística y acciones peligrosas deberán poderse evitar. El presente Report expone

pruebas por ordenador para aquellas medidas adicionales, que deberán emprender-

se a la hora de fabricar mandos seguros, a fin de habilitar semejantes sistemas

para aplicaciones en razón de la seguridad. Las medidas presentadas se refieren

a módulos de software en el lenguaje de programación Assembler. Con ello, y en

conjunto con la respectiva arquitectura de sistema (estructura) utilizada, se puede

alcanzar la seguridad requerida en conformidad con la detección de errores exigida

por la normativa. Los ejemplos presentados son instantáneas de posibles solu-

ciones, que no pretenden brindar respuestas a todas las interrogantes del caso.

Contents

1 Introduction...9

2 Type of self-tests ..11
2.1 Microprocessor system tests ..12

2.2 Peripherals tests ...13

3 Tests of internal blocks and units of the CPU..15
3.1 Basic tests ..15

3.1.1 Program counter test (PC_TEST.ASM) ..15

3.1.2 Accumulator test (ACC_TEST.ASM) ..17

3.1.3 PUSH, POP and RET stack instruction test (PPR_TEST.ASM)18

3.2 Advanced instruction tests..19

3.2.1 Jump if not zero (JNZ_TEST.ASM) ..20

3.2.2 Arithmetic instructions (ARI_TEST.ASM) ...22

3.2.3 Logic instructions (ANL_TEST.ASM, ORL_TEST.ASM,
XRL_TEST.ASM and CRS_TEST.ASM) ..23

3.2.4 Logic instructions (BIT_TEST.ASM) ...24

3.2.5 Transfer instructions (TRANTEST.ASM) ..27

4 Memory tests...29
4.1 Program memory test (ROM_TEST.ASM)..29

4.2 Data memory test (XRAMTEST.ASM)..32

5 Special function register test (SFR_TEST.ASM)37

6 Port tests (IO_TEST.ASM)..39

7 Main program..43

8 Concluding remarks ...45

9 References ..47

1 Introduction

BGIA Report 7/2006e 9

1 Introduction

Modern technology is now inconceivable without the microprocessor, and its use

is now taken for granted in complex controls [1] and modern protective devices such

as those used for the protection of persons on machinery and plant. Only by the use

of such components can flexibility, versatility, reliability and adaptability to the pro-

duction process be attained, not least also at acceptable cost.

In order for a microprocessor, which is a very complex component with a fault-mode

behaviour which cannot be defined, to be made fit for use in safety-related applica-

tions, measures must be taken by means of which failures during operation can be

detected and an appropriate safety-related response initiated. In practice, this means

that besides fulfilling its essential function, the CPU must also continually perform a

self-test. During this test, certain operations are executed, and the results compared

with the expected results. An identified deviation from the expected results must

trigger a defined, generally safety-related response.

In order for the various processing units and peripheral elements of a microprocessor

system to be tested, special tests are required for each of these elements, such as a

program memory test, a data memory test, instruction tests, etc. Once all tests have

been passed, it is assumed that the system is adequately fault-free.

The tests described in this report were developed on a type 80C537 microcontroller.

They are programmed and commented in modular form. Since the particular hard-

ware features of this controller were not exploited during development, transfer of the

tests to other derivatives of this popular processor family should not present much

difficulty. Porting to other processor architectures should also present no problems.

Attention must of course be paid to any major differences between hardware, and

to the associated need for software adaptation. The essential principles upon which

the design of these microprocessor tests is based are intended to provide valuable

insights and assistance. Information on the effectiveness and frequency of the self-

tests can be found in IEC 61508/VDE 0803 [2].

The software has been developed with care and in accordance with up-to-date good

practice. It is made available to the user free of charge.

1 Introduction

BGIA Report 7/2006e 10

Users use the software at their own risk. To the extent permissible by law, no liability

will be accepted for the software on any legal basis. In particular, no liability will be

accepted for material defects or defects in title, whether in the software or in the

associated documentation and information, particularly with regard to their correct-

ness, freedom from errors, freedom from property rights and copyright of third

parties, up-to-dateness, completeness and/or fitness for purpose, except in cases

of malicious or wrongful intent.

The BGIA – Institute for Occupational Safety and Health of the German Social

Accident Insurance undertakes to keep its website free of viruses; nevertheless, no

guarantee can be given that the software and information provided are virus-free.

Users are therefore advised to take appropriate precautions of their own and to use

a virus scanner before downloading software, documentation or information.

The software has been developed by staff at the BGIA independently of customers

and their applications. The results are therefore based upon the requirements of the

applicable standards and can be made available in response to queries.

2 Type of self-tests

BGIA Report 7/2006e 11

2 Type of self-tests

The tests implemented here can be divided essentially into two classes. The first of

these are microprocessor tests: these test proper operation of the central processing

unit (CPU), the on-chip peripheral elements, and the internal and/or external random-

access memory (RAM). The second class (peripheral tests) concerns tests of the

interfacing between the microprocessor system and the outside (for example via

the ports) for errors. Whereas microprocessor tests are largely independent of the

practical application concerned, port tests for example must give consideration to

connected external units which are to be controlled. The relevant hardware becomes

an essential part of these peripheral tests. Its characteristics, such as filter effects,

may therefore have a direct influence upon implementation of the corresponding port

test [3].

Figure 1 shows a schematic diagram of a microprocessor system structure in wide-

spread use in safety technology.

CPU/
controller

ROM

RAM

Watchdog
(WD)

Hardware to

be controlled

Clock
pulse

Clock
pulse

The microprocessor system consists of the CPU, which is the heart of the system;

the read-only memory (ROM), into which the program for the CPU is loaded; and the

Hardware to
be controlled

Figure 1:
General block structure of a
microprocessor system

2 Type of self-tests

BGIA Report 7/2006e 12

RAM, into which data are loaded during operation. A non-volatile, rewritable memory

module may also be employed. The use of such a memory module is dependent

upon the application, and is not considered in this model system. The model system

is connected interactively, via suitable interfaces, to the hardware to be controlled.

An essential component in the microprocessor system shown here is the watchdog

(WD), which monitors the function of the CPU. This structure requires the WD to

have an independent de-energization procedure by means of which the hardware to

be controlled can be switched into the safe state irrespective of the status of the

CPU. A criterion for this is that the system must possess a safe state which can be

attained by disconnection of the power source. The WD has a clock cycle of its own

independent of that of the CPU, since the independence of the WD for de-energi-

zation would not be assured were it to share a common clock cycle.

Another feature of the WD, not shown here but nevertheless important, is that it

is protected by a time window against multiple triggering within the time window.

Selection of the time window enables the program to be coupled more closely to the

program of the CPU. Multiple triggering within the time window may indicate that the

program is being executed incorrectly and be used to initiate the safe state, as with

failure of the trigger pulse to occur.

The structure of the microprocessor system shown in Figure 1 may vary with regard

to the location of the memory. For the design of the self-test, it is largely irrelevant

whether the memory (RAM, ROM) is integrated into the chip. The principle is that the

control system must initiate or maintain the safe state of a machine or installation in

the event of a self-test returning a negative result.

2.1 Microprocessor system tests

Examples of the following microprocessor system tests are provided below:

• Basic tests

- Accumulator test, test of elementary jump instructions

- Stack instruction test

- Program counter test (jump to program “islands”)

2 Type of self-tests

BGIA Report 7/2006e 13

• Advanced instruction tests

- Test of the transfer instructions

- Test of the logical operations

- Test of the arithmetic operations

• Memory tests

- Program memory test (ROM test)

- Data memory test (RAM test)

• Special function register test

- Test of the registers used for control of internal peripheral components

(timers, counters, etc.)

2.2 Peripherals tests

Peripherals tests include:

• Test of proper operation of the I/O ports

• Test of the external peripherals

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 15

3 Tests of internal blocks and units of the CPU

In order to illustrate the principal aspects, extracts from the assembler source

code are shown in some of the following sections. For an explanation of variables,

constants and functions, please refer to the complete source code. A declaration

file (DEC.ASM), in which the constants and memory locations of the variables are

defined, is available for this purpose.

3.1 Basic tests

3.1.1 Program counter test (PC_TEST.ASM)

The program counter is a component of a CPU which determines which point of the

program to be run is to be executed. Should this pointer fail to operate correctly,

owing for example to a stuck-at error of certain bits or crosstalk of bits, proper exe-

cution of the program is no longer assured. Instructions will be skipped, and the pro-

gram will be executed at a completely different point to that intended by the program-

mer.

As a result, proper operation of the CPU is no longer assured. In order for such faults

in the program counter to be detected and for the microprocessor to be placed in a

safe state, a test of the program counter must be performed. In this example, jumps

are performed to program "islands" located in different address ranges of the

program memory, in order for a computing operation involving a comparison to be

conducted there. Should a fault be detected, an endless loop is entered. As a general

principle, entry of an endless loop leads to the external WD no longer being retrig-

gered, as a result of which the system is placed in the safe state by means of the

second de-energization procedure.

Implementation of the program counter test is shown in broad terms in Figure 2 (see

Page 16).

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 16

Figure 2:
Program counter test procedure

PC_TEST

End of function

Program island 4000 h

Error occurred?

No

Yes

Program island 4100 h

Error occurred?

No

Yes

Program island 4200 h

Error occurred?

No

Yes

Program island 4400 h

Error occurred?

No

Yes

Program island 4800 h

Error occurred?

No

Yes

Program island 6000 h

Error occurred?

No

Yes

Program island 8000 h

Error occurred?

No

Yes

Program island 5000 h

Error occurred?

No

Yes

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 17

3.1.2 Accumulator test (ACC_TEST.ASM)

The accumulator is the central register of the CPU and is involved in virtually all

operations. In many cases, it serves as both the source register and target register

for a large proportion of the instructions that are executed. Proper operation of this

register is therefore highly relevant to faultless operation of the entire CPU. Correct

operation of the accumulator is tested by means of the test program. For this pur-

pose, the test program "pushes" a "1" through the accumulator; upon completion

of the push routine, it checks whether the routine has required the same number

of push operations as intended during design of the test. In the event of an error,

a corresponding number is loaded into an error memory, and the program enters

an endless loop.

; Module: ACC_TEST.ASM

; Version 1.00 BIA, sub-division 5.2 Date: 15.09.2000

; Function:

; Test of the accumulator by means of a walking 1. The background cannot be tested,

; since the register is required as an arithmetic register for background analysis; its

; content is therefore constantly changing. Owing to its frequent use, however, faults in

; the accumulator are also detected by other means. Should the carry be set after fewer

; than 7 steps, the cycle counter has not yet reached 0, and an accumulator fault is

; therefore probable.

; This routine could also be modified such that the initial value of R1 is 07. The additional

; DEC R1 command would then not be necessary. In the arrangement shown however,

; the carry is also tested deliberately after 7 iterations of the cycle, with the result that

; firstly, JC is tested, and secondly, a continuous 00 in the accumulator is detected.

; Input parameters: none

; Output parameters: none

; Changed registers: A, R1, PSW

; Changed memory ranges: none

; Exit with error: none

; Higher-level modules: CPU_TEST.ASM

; Lower-level modules: none

; Called by: MAIN

; Calls: -

; Stack depth: 2 bytes

; Register bank used: current bank

; ***

ACC_TEST: CLR C

 MOV R1,#08 ; Let R1 be the cycle counter

 MOV A,#01 ; Test byte: 0000$0001

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 18

ACC_1: RLC A ; Walking 1 owing to carry flag

 JC ACC_2 ; If the 1 has arrived in the carry, jump to ACC_2

 DJNZ R1, ACC_1 ; Decremented cycle counter

ACC_2: DEC R1 ; Decremented cycle counter again

 CJNE R1, #00h, ACC_ERR ; The accumulator test proper is performed here

 SJMP ACC_ENDE ; End of the routine

ACC_ERR: MOV FEHLER,#FEHLER_ACC ; Load error memory

 SJMP ACC_ERR ; Endless loop

ACC_ENDE: RET

3.1.3 PUSH, POP and RET stack instruction test (PPR_TEST.ASM)

The PUSH and POP instructions have the function of placing data temporarily on

the stack. These instructions are often used in functions in order to "rescue" register

contents following function entry and to restore the previous register content prior to

function exit. During this test, a check is performed of whether the stack pointer is

incremented and decremented correctly. In addition, a check is performed of whether

the value stored in the stack is retrieved again correctly from it.

The function of the RET instruction is to leave subroutines again; the return address

has been placed in the stack automatically beforehand by the CPU. In order to test

the RET command, a defined return address is placed in the stack, and the RET

instruction then executed. The CPU must then jump to the previously determined

address and continue program execution from that point.

; Module: PPR_TEST.ASM

; Version 1.00 BIA, sub-division 5.2 Date: 15.09.2000

; Function:

; Proper operation of the PUSH and POP instructions and of the RET instruction are tested.

; Input parameters: none

; Output parameters: none

; Changed registers: A, R0, R1, PSW

; Changed memory ranges: none

; Exit with error: branch to ERROR function

; Higher-level modules: CPU_TEST.ASM

; Lower-level modules: none

; Called by: MAIN

; Calls: -

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 19

; Stack depth: 4 bytes

; Register bank used: current bank

; ***

PPR_TEST:

PPR_PUSHPOP: MOV R0,SP ; Save stack pointer position

 MOV R1,SP

 INC R1 ; Create address of the byte to be pushed

 MOV A,#0AAh

 PUSH ACC

 MOV A,R1 ; Expected result and comparison

 CJNE A,SP,PPR_err1

 CLR A

 MOV A,@R1

 CJNE A,#0AAH,PPR_err1 ; Expected result and comparison

 CLR A

 POP ACC

 CJNE A,#0AAH,PPR_err1 ; Expected result and comparison

 MOV A,R0 ; Expected result and comparison

 CJNE A,SP,PPR_err1

PPR_RET: MOV DPTR,#PPR_RET1 ; Save return address in 16-bit register

 PUSH DPL ; Return address in stack

 PUSH DPH

 RET ; Return (to PPR_RET1)

 NOP

 NOP

 NOP

 NOP

 NOP

 SJMP PPR_err1

PPR_RET1: SJMP PPR_ENDE

 NOP

 NOP

 NOP

 NOP

 NOP

PPR_err1: MOV FEHLER,#FEHLER_PPR ; Load error memory

 LJMP ERROR

PPR_ENDE: RET

3.2 Advanced instruction tests

In order to test proper functioning of the individual machine instructions, each

instruction has been used within the instruction test in all possible addressing

variants, and the result compared with an expected result.

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 20

3.2.1 Jump if not zero (JNZ_TEST.ASM)

In this conditional branch, a jump is made dependent upon whether the accumulator

contains the value zero or a value not equal to zero. In order to perform the test,

a value is written into the accumulator, and the same value into the auxiliary accu-

mulator. The two values are subtracted from each other and the result of the opera-

tion anticipated in the accumulator. Following this subtraction operation, the JNZ

instruction is used to check whether the result is correct. In the event of an error, the

error memory is written to, and the program enters an endless loop. The check is

performed with two different values. Should, during execution of a jump, the stack

pointer point into the body of an instruction, the NOP instructions have the function

of clearing the STACK and enable the CPU to “recover” during the next iteration.

; Module: JNZ_TEST.ASM

; Version 1.00 BIA, sub-division 5.2 Date: 15.09.2000

; Function:

; Test by JNZ for complementary accumulator contents AAh

; and 55h at 5 return steps.

; Input parameters: none

; Output parameters: none

; Changed registers: A, B, PSW

; Changed memory ranges: none

; Exit with error: none

; Higher-level modules: CPU_TEST.ASM

; Lower-level modules: none

; Called by: MAIN

; Calls: -

; Stack depth: 2 bytes

; Register bank used: none

; ***

JNZ_TEST: CLR C

 MOV A,#0AAh ; Load first test byte into accumulator

 MOV B,#0AAh ; Load first test byte into register B

 SUBB A,B ; Compare A and B by subtraction

Error1: NOP

 NOP

 NOP

 NOP

 NOP

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 21

 MOV FEHLER,#FEHLER_JNZ ; Load error memory

 JNZ Error1 ; Should an error occur in the registers or

 ; during subtraction, JNZ forces an endless loop,

 ; the relative address in this case is always 05.

 MOV FEHLER,#0 ; Clear error memory

 JZ Error2 ; If result OK, jump to CJNE test

 MOV FEHLER,#FEHLER_JNZ ; Load error memory

 NOP

 NOP

 NOP

 NOP

 NOP

Error8: SJMP Error8 ; Both jumps have failed > endless loop

Error2: NOP

 NOP

 NOP

 NOP

 NOP

 MOV FEHLER,#FEHLER_JNZ ; Load error memory

 CJNE A,#00h,Error2 ; Should JNZ be ignored, the controller

 ; becomes trapped in an endless loop

 MOV FEHLER,#0 ; Clear error memory

; Same procedure for the value 55h

 MOV A,#055h ; Load second test byte into accumulator

 MOV B,#055h ; Load second test byte into register B

 SUBB A,B ; Compare A and B by subtraction

Error3: NOP

 NOP

 NOP

 NOP

 NOP

 MOV FEHLER,#FEHLER_JNZ ; Load error memory

 JNZ Error1 ; Should an error occur in the registers or

 ; during subtraction, JNZ forces an endless loop,

 ; the relative address in this case is always 05.

 MOV FEHLER,#0 ; Clear error memory

 JZ Error4 ; If result OK, jump to the CJNE test

 MOV FEHLER,#FEHLER_JNZ ; Load error memory

 NOP

 NOP

 NOP

 NOP

 NOP

Error9: SJMP Error9 ; Both jumps have failed > endless loop

Error4: NOP

 NOP

 NOP

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 22

 NOP

 NOP

 MOV FEHLER,#FEHLER_JNZ ; Load error memory

 CJNE A,#00h,Error4 ; Should JNZ be ignored, the controller becomes

 ; trapped in an endless loop

 MOV FEHLER,#0 ; Clear error memory

 RET

3.2.2 Arithmetic instructions (ARI_TEST.ASM)

To permit testing of the CPU's various arithmetic instructions, selected values are

written into the relevant registers. The arithmetic operation is executed, the result

compared with the expected value, and if applicable a branch is performed to an

error routine together with a saved error number. The tests also take into account

different addressing variants of the arithmetic instructions such as direct addressing,

indirect addressing or an operation with a concrete value. By way of example, only

one of the tests is shown here.

; Module: ARI_TEST.ASM

; Version 1.00 BIA, sub-division 5.2 Date: 15.09.2000

; Function:

; Test of arithmetic instructions: ADD, ADDC, SUBB, INC, DEC, MUL, DIV, DA

; Input parameters: none

; Output parameters: none

; Changed registers: see individual functions

; Changed memory ranges: none, except for memory cells specially reserved

; for these tests

; Exit with error: branch to ERROR function

; Higher-level modules: LOGITEST.ASM

; Lower-level modules: none

; Register bank used: current bank

; ***

; ********************* ADD_TEST 1 ***

; Function: test of ADD A,R0

; Called by: ADD_TEST

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 23

; Calls: -

; Changed registers: A, R0, PSW

; Stack depth: 2 bytes

; **

ADD_TEST1: MOV A,#0AAh ; Load test pattern 1

 MOV R0,#55h ; Load test pattern 2

 ADD A,R0 ; Instruction test

 CJNE A,#0FFh,ADD_err1 ; Comparison with expected result

 RET

ADD_err1: LJMP ERROR_ARI

Other tests: see source code of ARI_TEST.ASM

3.2.3 Logic instructions (ANL_TEST.ASM, ORL_TEST.ASM,
XRL_TEST.ASM and CRS_TEST.ASM)

The test of the logic instructions is similar to that of the arithmetic instructions. Here

too, selected values are written to the relevant registers, the operations are executed,

and the result is compared with the expected result. Different addressing variants are

considered. Once again, only one of the tests is shown by way of example.

; Module: ANL_TEST.ASM

; Version 1.00 BIA, sub-division 5.2 Date: 15.09.2000

; Function:

; The subroutines test the logic instruction ANL as follows: an AND

; operation is performed on AAh (10101010B) and 56h (01010110B)

; and the computed result compared with the expected result of 02h (00000010B).

; Input parameters: none

; Output parameters: none

; Changed registers: see individual functions

; Changed memory ranges: none, except for memory cells specially reserved for

; these tests

; Exit with error: branch to ERROR function

; Higher-level modules: LOGITEST.ASM

; Lower-level modules: none

; Called by: ANL_TEST

; Calls: -

; Stack depth: 2 bytes

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 24

; Register bank used: current bank

; ***

; ********************* ANL_TEST 1 **

; Function: test of ANL A,R0

; Changed registers: A, R0, PSW

; ***

ANL_TEST1: MOV A,#0AAh ; Load test pattern 1

 MOV R0,#56h ; Load test pattern 2

 ANL A,R0 ; Instruction test

 CJNE A,#02h,ANL_err1 ; Comparison with expected result

 RET

ANL_err1: LJMP ERROR_ANL

Other tests: refer to source code of ANL_TEST.ASM, ORL_TEST.ASM, XRL_TEST.ASM, CRS_TEST.ASM

3.2.4 Logic instructions (BIT_TEST.ASM)

In these tests, the bit-addressable memory range and proper execution of the bit

instructions are tested.

The memory range is tested by the deliberate modification of bits followed by

inspection of the rest of the bit-addressable memory range for changes. The bit-

oriented logic instructions are tested in a separate function by application of the

various bit instructions and comparison of each result with the expected result.

; Module: BIT_TEST.ASM

; Version 1.00 BIA, sub-division 5.2 Date: 15.09.2000

; Function:

; The subroutines test the BIT addressing in the bit-addressable memory range

; from 20H to 2FH (internal RAM). This accounts for 128 bit addresses. Owing to

; the time required for this test, eight addresses are selected deliberately for the

; test (walking 1 against 0 background in the bit address).

; Procedure:

; The memory range is first cleared.

; The selected bit is then set and tested.

; The remainder of the memory is then inspected to ensure that its content is correct.

; The set bit is then cleared again.

; (The bit commands SETB bit and CLR bit are tested at the same time during these operations).

; The commands for logical bit operations are tested in a further test.

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 25

; Input parameters: none

; Output parameters: none

; Changed registers: see individual functions

; Changed memory ranges: see individual functions

; Exit with error: branch to ERROR function

; Higher-level modules: LOGITEST.ASM

; Lower-level modules: none

; Register bank used: current bank

; ***

; ********************* BIT_TEST1 ***

; Function: test bit address 01h

; Called by: BIT_TEST_A

; Calls: BIT_SPEICHER_RUECKL

; Changed registers: A, PSW

; Changed memory ranges: test bit (bit 01h)

; Stack depth: 2 bytes + called functions

; ***

BIT_TEST1: MOV BYTE_ADR,#20h ; Preset flags for exclusion of byte addresses

 SETB 01h ; Sets test bit

 MOV A,INTRAM20

 CJNE A,#02h,Bit_err ; Comparison with expected result

 LCALL BIT_SPEICHER_RUECKL ; Check remaining bit-addressable memory

 CLR 01h ; Clears test bit

 RET

Other bit tests and help functions: see source code of BIT_TEST.ASM

; ***

Bit_err: MOV FEHLER,#FEHLER_BIT ; Load error memory

 LJMP ERROR

; ***

; ********************* BIT_SPEICHER_RUECKL *********************************

; Function: examines the bit-addressable memory range (20h-2Fh) for correct

; content, with the exception of the byte that has just been written to.

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 26

; Called by: BIT_TEST1 - BIT_TEST_8

; Calls: -

; Changed registers: A, R0, PSW

; Changed memory ranges: none

; Stack depth: 2 bytes

; ***

BIT_SPEICHER_RUECKL:

 MOV R0,#20h ; Beginning of the bit-addressable range

comp2: MOV A,R0

 CJNE A,BYTE_ADR,comp3 ; Position of the data byte which is =! 0

 INC R0 ; If yes, increment position

comp3: CJNE R0,#30h,comp4 ; End of the bit-addressable range?

 SJMP comp5

comp4: CJNE @R0,#00h,BIT_err ; Current byte==0 ?

 INC R0 ; Increment position

 SJMP comp2

comp5: RET

; ********************* BIT INSTRUCTIONS **

; Function: checks the bit-oriented instructions for correct operation

; Called by: BIT_TEST_D

; Calls: -

; Changed registers: PSW

; Changed memory ranges: bit address 01h

; Stack depth: 2 bytes

; ***

BIT BEFEHLE: SETB 01h

 MOV C,01h ; Transfer

 JNC BIT_err ; Result OK?

 CPL C

 ANL C,01h

 JC BIT_err ; Result OK?

 ORL C,01h

 JNC BIT_err ; Result OK?

 CLR C

 JC BIT_err ; Result OK?

 SETB C

 CLR 01h

 MOV 01h,C ; Transfer

 JNB 01h,BIT_err ; Result OK?

 ANL C,/01h

 JC BIT_err ; Result OK?

 ORL C,/01h

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 27

 JC BIT_err ; Result OK?

 CLR 01h

 JB 01h,BIT_err ; Result OK?

 CPL 01h

 JNB 01h,BIT_err ; Result OK?

 RET

3.2.5 Transfer instructions (TRANTEST.ASM)

In order for the transfer instructions to be tested, the individual instructions are

executed with the different addressing variants, and the result compared with the

expected result.

; Module: TRANTEST.ASM

; Version 1.00 BIA, sub-division 5.2 Date: 15.09.2000

; Function:

; Test of transfer instructions: MOV, XCH, MOVX, MOVC

; Input parameters: none

; Output parameters: none

; Changed registers: see individual functions

; Changed memory ranges: none, except for memory cells specially reserved

; for these tests

; Exit with error: branch to ERROR function

; Higher-level modules: CPU_TEST.ASM

; Lower-level modules: none

; Stack depth: see individual functions

; Register bank used: current bank

; Note:

; The functions are to be called collectively from within the user program.

; ***

; ********************* MOV_TEST1 ***

; Function: test of MOV A,R0

; Called by: MOV_TEST

3 Tests of internal blocks and units of the CPU

BGIA Report 7/2006e 28

; Calls: -

; Changed registers: A, R0, PSW

; Stack depth: 2 bytes

; ***

MOV_TEST1: MOV A,#55h ; Initialize accumulator

 MOV R0,#0AAh ; Load test pattern 1

 MOV A,R0 ; Instruction test

 CJNE A,#0AAh,TRAN_err1 ; Comparison with expected result

 RET

Other tests: see source code of TRANTEST.ASM

4 Memory tests

BGIA Report 7/2006e 29

4 Memory tests

4.1 Program memory test (ROM_TEST.ASM)

The program memory of a CPU is the component which determines the function to be

performed by the system. A control processor for a video recorder can be converted

into a control processor for a bucket loader merely by loading of a different software

into the program memory.

For this reason, it is extremely important that the software be prevented from under-

going any undesired changes over the entire life of a system. This could occur even

should only a single bit of the program memory change in value. Such a change may

change the significance of an instruction such that the CPU then executes a complete-

ly different instruction at a certain point of the program. In a best-case scenario, this

results in the processing "crashing". Undesired execution of certain functions, possibly

hazardous, cannot be ruled out, however.

In order to prevent such changes within a memory cell from passing undetected, the

content of the program memory is also checked continually by the CPU. This can be

achieved by the formation of a signature, or checksum (in this case CRC 16), from the

stored values [4]. This is then compared with a signature generated when the program

memory is first programmed and then stored separately. Any change to the signature

is detected, and the CPU is able to take measures by executing a previously defined

error response, remaining in an endless loop, and thereby placing the system in the

safe state.

In the test implemented here (Figures 3 and 4, see Pages 30 and 31), the program

memory is divided into m segments. Each of these segments is integrated seamlessly

into formation of the signature. Once a segment has been processed, the CPU is

available for other tasks. The result is that the test is divided into manageable small

time slices, and the processor is able to observe the response time required for exe-

cution of the control task.

4 Memory tests

BGIA Report 7/2006e 30

Figure 3:
Segmentation of the ROM test

m = mmax-1

m = mmax

m = 1

m = 0

.

.

.

Ende 1. Segment

adressierte
Speicherzelle

Anfang 2. Segment

1 1 1 1 10 0 0

Start of 2nd segment

End of 1st segment

Addressed
memory cell

4 Memory tests

BGIA Report 7/2006e 31

Figure 4:
Execution of the ROM test

ROM_TEST

Set address
counter to segment

start address

 Use old signature
 as initial signature

 Exit with error

Retrieve addressed
byte from ROM

 Compute new signature

End of function

Set segment start
address and signature

to zero

 Signature =
 desired signature?

Yes

No

Increment
address counter

End of ROM reached?

No

Yes

Assign
new segment start

address

End of segment
reached?

Yes

No

4 Memory tests

BGIA Report 7/2006e 32

4.2 Data memory test (XRAMTEST.ASM)

In general, the points described for the program memory also apply to the data

memory. Undesired changes to discrete data bits may also lead to an undesired and

possibly also hazardous response on the part of the CPU. The data memory must

therefore also be tested to ensure that it is operating properly and that, for example,

any sticking of bits at a certain value or the short-circuiting of any given bits to form

other random bits is detected, and a corresponding error response initiated.

As with the ROM test, segmentation (Figure 5) is performed to divide the test into time

slices that are sufficiently small to assure the response time required by the CPU for

the control task.

Figure 5:
Segmentation of the RAM test

m = mmax-1

m = mmax

m = 1

m = 0

.

.

.

Ende 1. Segment

aktive
Speicherzelle

Anfang 2. Segment

1 1 1 1 10 0 }0
Signaturbildung über
gesamtes Segment

Start of 2nd segment

End of 1st segment

Active
memory cell

Signature formed
over entire segment

4 Memory tests

BGIA Report 7/2006e 33

A further distinction must be drawn here between the XRAMTEST1 function, which

tests individual memory cells for internal faults, and the XRAMTEST2 function, which

detects short-circuits between any given memory cells (Figures 6 and 7, see Page 34).

Figure 6:
RAM test 1 procedure

XRAM_TEST1

Save content of
active cell

Push walking “1”
through active cell

 Defective value in
active cell?

Exit with error

End of function

No

Restore original value
in active cell

First
memory segment

selected?

Yes

No

Yes

This procedure is

iterated 8x until the

walking “1” has

passes through

the cell

4 Memory tests

BGIA Report 7/2006e 34

Figure 7:
RAM test 2 procedure

XRAM_TEST2

Save content of
active cell

Form signature
over segment

Exit with error

Save test value 00h
in active cell

Form signature over
segment

Save test value FFh in
active cell

Form signature over
segment and select

next segment

Do signatures
formed match?

No

Yes

Do signatures
formed match?

No

Yes

End of function

 Restore original values
 in active cell

Increment address
of active cell

Set segment address
to start of memory

Set address of
active memory cell to

start of memory

Active cell at
end of memory? Yes

No

Segment address at
end of memory?

Yes

No

In order for short-circuits between any memory cells to be detected, each byte of the

entire memory to be tested is tested against the rest of the memory. For this purpose,

various different values are written to the byte to be tested, and the remaining memory

4 Memory tests

BGIA Report 7/2006e 35

then checked for changes. This test is performed by generation of a signature: con-

sequently, a difference between the values of the signature before and after writing to

the byte to be tested indicates the presence of a short-circuit between memory cells. In

order for the time slice required for the RAM test to be kept small, the RAM is divided

into m segments as described above, and a signature generated only over one seg-

ment at a time. This ensures that the CPU is not occupied for a longer period solely

with the test, thereby rendering prompt execution of the user program impossible for

lack of processing time.

The file XRAMTEST.ASM contains further information concerning the RAM test.

5 Special function register test (SFR_TEST.ASM)

BGIA Report 7/2006e 37

5 Special function register test (SFR_TEST.ASM)

In order for the internal special function registers of the microcontroller to be tested,

they too are written to individually with values after their content has been stored,

in the same way as other memory cells. A signature is formed for the remaining

cells, i.e. those not being tested. Once the cells under test have been written to,

a signature is again generated over the remaining memory cells, in order to detect

whether crosstalk with other cells has occurred.

It must be noted here that the writing of some special function registers triggers func-

tions of certain peripheral controller components (such as writing to the send register

of the serial interface). Consequently, some of these registers cannot be tested by

means of this method, and other test methods may have to be employed.

A particular aspect of the test implemented in this example is that the content of

the special function registers under test is first copied into a range of the external

data memory; generation of the signature is simpler there, since the special function

registers cannot be addressed indirectly.

6 Port tests (IO_TEST.ASM)

BGIA Report 7/2006e 39

6 Port tests (IO_TEST.ASM)

Figure 8 contains a schematic representation of a possible port interface by which the

CPU can be enabled to read back the instantaneous state of the output peripherals.

Correct functioning of the transistor can be tested at any time with the collector-

emitter path turned on, by removal of the drive signal from the CPU for between a

few hundred microseconds and a few milliseconds (as a function of the filter action of

the external circuit) and reading back, via the port input, of proper disconnection. This

tests whether the processor would still be able to de-activate the relay should this be

necessary. The duration of removal of the drive signal must be selected such that the

relay is unable to drop out and the machine control would be influenced by the test

measure.

Vcc

Output

Input

CPU/
controller

Figure 8:
Port interface arrangement
with readback

In order to make the port output used to drive the relay partly independent of the port

input used for readback, different ports should be used (e.g. port 1.5 for the output

bit, port 3.5 for the input bit).

Besides the test described here, fault detection must be performed for the actuator

itself, for example the relay shown in Figure 8. For this purpose, the switching state

of a break contact on the mechanically linked output relay is generally read back in

through an input port. In this test, it is essential that a request for the relay to switch

be executed by the process. Should the relay be unable to drop out owing to internal

6 Port tests (IO_TEST.ASM)

BGIA Report 7/2006e 40

faults, this is detected by the feedback of the mechanically linked contact, and the

second de-energization procedure involving the watchdog must initiate the safe state.

Should the fault remain present, re-energization of the control system is then reliably

prevented.

In order for these diagnostics features to be available, both the hardware and the

software must satisfy the necessary criteria. The measures for testing of the output

ports on the hardware side are shown in Figure 8. On the software side, a function

must be created which tests whether the controller output is still capable of switching.

The function implemented here (Figure 9) queries and stores the status of the out-

puts.

IO_TEST

 Value read back =
 correct value?

Save original values
of the port outputs

Invert selected
bit and place on

port output

 Select next bit

Have all bits
been checked?

Exit with error

End of function

Yes

No

Yes

No

Restore original
values on

port outputs

Select first bit

Figure 9:
Port test procedure

6 Port tests (IO_TEST.ASM)

BGIA Report 7/2006e 41

Each bit of the port is then inverted in turn1, and the expected bit pattern read in and

compared with the output bit pattern. Any static states of outputs and inputs on the

ports concerned are thus detected.

1 Note: in this procedure, it is essential that a "1", even if only transient, should not be allowed to

cause actuation of the external peripherals.

7 Main program

BGIA Report 7/2006e 43

7 Main program

Figure 10 shows a schematic possible arrangement of the main program for incorpo-

ration of both the self-tests and the user program.

RESET

Start-up tests
(performance of all

self-tests)

Exit with error
(e.g. endless loop)

Self-tests

User program

 Error occurred?

Yes

No

 Error occurred?

No

Yes

Figure 10:
Procedure for the main program

It is important here that following energization of the microprocessor system and be-

fore the user program is executed for the first time, all tests are executed completely

7 Main program

BGIA Report 7/2006e 44

once. This start-up test ensures that only a correctly functioning microprocessor

system is placed in service. Following execution of all tests (CPU_TEST.ASM),

the continually executed self-tests can be divided into time slices for execution.

The main program will be programmed completely differently according to the

intended application of the microcontroller. Both procedure-driven and event-driven

programming are conceivable for this purpose; no specification can therefore be

made at this point of a suitable test manager.

8 Concluding remarks

BGIA Report 7/2006e 45

8 Concluding remarks

This report is intended to illustrate that there is no single “right way”. The examples

shown are intended as suggestions only and to facilitate access to the subject-matter.

For further considerations, up to and including a complete safe system, it must be

appreciated that the basis for such a system lies in the safety-related structure. The

microprocessor tests provided in this report are intended to complement such a sys-

tem and to prevent the accumulation of faults. The response to detected faults may be

adapted to the circumstances of a particular system. Should issues require clarification

during implementation, the BGIA can provide appropriate advice.

“Quo vadis, fault?” was the question posed in the sub-title. All faults detected by the

tests are passed to the watchdog, as a result of which – indirectly, by the creation of

an endless loop in the test program being executed – they fail to supply trigger signals

to the watchdog, and thus bring about the safe state by initiation of the second de-

energization procedure. This is one of the possible structures which, within a package

of further measures, is suitable for controlling the impact of random failures in machine

safeguarding.

9 References

BGIA Report 7/2006e 47

9 References

[1] Hauke, M.; Schaefer, M.; Apfeld, R.; Boemer, T.; Huelke, M. et al.: Functional

safety of machine controls – Application of EN ISO 13849. BGIA Report 2/2008e.

Ed.: BGIA – Institute for Occupational Safety and Health of the German Social

Accident Insurance, Sankt Augustin 2009. www.dguv.de/bgia, Webcode e91335

(in preparation)

[2] IEC 61508/VDE 0803: Functional safety of electrical/electronic/programmable

electronic safety-related systems. Beuth, Berlin 2002

[3] Klug, J.; Schaefer, M.: Fehlererkennende Maßnahmen in Mikroprozessoren.

Erich Schmidt, Berlin 1997

[4] Leisengang, D.: Klassifikation und Einsatz von Signaturregistern zur Fehler-

erkennung in digitalen Schaltungen. Dissertation, Technische Universität

München, 1982

More detailed literature:

Halang, W. A.; Konakovsky, R.: Sicherheitsgerichtete Echtzeitsysteme. Oldenbourg,

Munich 1999

Leisengang, D.: Signaturanalyse in der Datenverarbeitung. Elektronik 21 (1983),

pp. 67-72

Hölscher, H.; Rader, J.: Mikrocomputer in der Sicherheitstechnik. Verlag TÜV

Rheinland, 1984

Schaefer, M.; Gnedina, A.; Bömer, T.; Büllesbach, K.-H.; Grigulewitsch, W.; Reuss, G.;

Reinert, D.: Programmierregeln für die Erstellung von Software für Steuerungen mit

Sicherheitsaufgaben. Verlag für neue Wissenschaft, Bremerhaven 1998

Siemens Microcomputer Components, SAB 80C517/80C537, 8-Bit CMOS Single-Chip

Microcontroller. Siemens, Munich 1983

	1 Introduction
	2 Type of self-tests
	2.1 Microprocessor system tests
	2.2 Peripherals tests

	3 Tests of internal blocks and units of the CPU
	3.1 Basic tests
	3.1.1 Program counter test (PC_TEST.ASM)
	3.1.2 Accumulator test (ACC_TEST.ASM)
	3.1.3 PUSH, POP and RET stack instruction test (PPR_TEST.ASM)

	3.2 Advanced instruction tests
	3.2.1 Jump if not zero (JNZ_TEST.ASM)
	3.2.2 Arithmetic instructions (ARI_TEST.ASM)
	3.2.3 Logic instructions (ANL_TEST.ASM, ORL_TEST.ASM, XRL_TEST.ASM and CRS_TEST.ASM)
	3.2.4 Logic instructions (BIT_TEST.ASM)
	3.2.5 Transfer instructions (TRANTEST.ASM)

	4 Memory tests
	4.1 Program memory test (ROM_TEST.ASM)
	4.2 Data memory test (XRAMTEST.ASM)

	5 Special function register test (SFR_TEST.ASM)
	6 Port tests (IO_TEST.ASM)
	7 Main program
	8 Concluding remarks
	9 References

